Ocena brak

Ultra i infradźwięki - Zastosowanie ultradźwięków w technice

Autor /Jerry Dodano /04.10.2011

Możliwość biernego zastosowania wiąże się przede wszystkim z opanowaniem techniki emitowania drgań ultradźwiękowych o znacznej częstotliwości (1-5MHz) w środowisku stałym albo płynnym. Nawigacja. Jednym z wczesnych zastosowań było wykrywanie przeszkód znajdujących się w wodzie. Stąd w nawigacji morskiej echosondy ultradźwiękowe służą przede wszystkim do określania położenia dna morskiego, podając informacje o usytuowaniu dna pod statkiem.

Analiza echa służy także do wykrywania ławic ryb oraz przeszkód jak wraki czy góry lodowe. W ten sposób zostało zrealizowane pierwotne założenie wykorzystania ultradźwięków, jakim poświęcił wiele lat pracy Langevin. Ze względu na niewielkie praktycznie pomijane uginanie się fali ultradźwiękowej w wodzie różnego rodzaju echosondy bardzo rozpowszechniły się w żegludze i jest to jeden z nieodzownych instrumentów.

Defektoskopia. W warunkach przemysłowych defektoskopia stanowi ważne uzupełnienie techniki rentgenowskiej badania struktury materiałów, w wielu przypadkach nawet ją przewyższając. W przedmiotach o dużym przekroju promienie Roentgena są silnie pochłaniane dając niewyraźny obraz szczelin i jam jako wad produktu, zjawisko takie nie ma miejsca w przypadku drgań ultradźwiękowych. Ultradźwiękowe badanie materiałów jest prowadzone dwoma metodami: przepuszczania i echa.

Metoda przepuszczania należy do wcześniej stosowanych, a dziś o znacznie mniejszym zastosowaniu. Pozostaje jednak nadal przydatna do badania cienkich elementów. W tych bowiem przypadkach metoda echa bywa zawodna. W metodzie przepuszczania stosuje się oddzielnie czujniki do wysyłania a następnie odbierania sygnału po przejściu ultradźwięku przez strukturę. Przenikalność materiału jest mniejsza w miejscu zawierającym wadę materiałową. Pomiar taki można przeprowadzić z wielką dokładnością, wykrywając zmiany różniące się o jeden procent od struktury prawidłowej. Urządzenia pracują zwykle przy częstotliwościach od 0,9 do 2,1 MHz, a zautomatyzowanie tego procesu bardzo upraszcza kontrolę.

Metoda echa jest rozpowszechniona w większym stopniu i wyparła w wielu dziedzinach inne sposoby. Wysyłane przez defektoskop impulsy są odbierane po odbiciu od granicy ośrodka i mogą być odróżniane w funkcji czasu przy wielokrotnym odbiciu od kilku warstw. Na ekranie defektoskopu można analizować odbicia pochodzące od wad znajdujących się w materiale. Ultradźwięki wykorzystywane w tych badaniach mają częstotliwość 2 – 4 MHz i więcej. Jak wspomniano wcześniej , są one tłumione przez środowisko powietrzne.

Nawet przyłożenie czujnika bezpośrednio do badanej powierzchni nie zapobiega temu tłumieniu, jak się bowiem okazało, dopiero nacisk rzędu kilkuset kG w miejscu przykładania czujnika może spowodować wyeliminowanie tej przeszkody. Dlatego jako środek stosuje się roztwory olejowe o lepkości odpowiedniej dla danego procesu. W hutnictwie metoda echa wymaga nieco niższych częstotliwości – około 500 – 700 kHz. Albowiem fale o częstotliwości drgań wyższej są pochłaniane przez sam materiał badany. Jest to jednak metoda tańsza i bezpieczniejsza do promieni Roentgena. Metoda ta jest również stosowana do kontroli elementów betonowych.

Metoda echa oddaje też liczne usługi w medycynie (np.: echo serca, ultrasonograf, etc.). Coraz częściej jednak ultradźwięki są również stosowane w przemyśle spożywczym, celem kontroli stanu mrożonek, szczególnie ryb i mięsa. Jest to dogodna metoda sprawdzania w jakim tempie produkty były mrożone oraz czy nie uległy one rozmrożeniu i ponownemu zamrożeniu. W takim wypadku artykuły rozmrożone będą miały szerszą amplitudę i więcej załamków w porównaniu do tkanki świeżej. Rozchodzenie ultradźwięków jest uzależnione od własności fizycznych i struktury tkanki.

Zgrzewanie. Istotną cechą wyróżniającą ten proces jest możliwość uzyskania połączeń w trudnodostępnych miejscach bez uprzedniego oczyszczenia oraz fakt, iż nie wymaga ona czynności wykańczających. Szybkość i prostota procesu wpływają na jego ekonomiczność. Zgrzewanie tworzyw sztucznych i metali polega na wytwarzaniu ciepła tarcia w następstwie punktowego drgania o dużej częstotliwości warstw, które mają być połączone. Ciepło czyni materiały plastycznymi, łącząc je w ten sposób w jednorodny materiał w czasie ułamków sekundy.

Warunkiem zajścia zjawiska jest zbliżona temperatura topnienia wszystkich materiałów. Proces ten polega na nacisku głowicy ultradźwiękowej w miejscu łączenia materiału. Jednocześnie w tych warunkach częstotliwość 20-24kHz przy amplitudzie kilkudziesięciu do kilkuset mikrometrów wywołuje miejscowe drgania przyczyniając się do wzrostu temperatury, uplastycznienia i połączenia. W ten sposób można łączyć materiały o różnych grubościach ale zbliżonych temperaturach topnienia. Tą metodą można scalić np.: glin (aluminium) ze szkłem, a więc materiały o różnych właściwościach fizykochemicznych.

Coraz bardziej popularna staje się ostatnio również ultradźwiękowa obróbka metali, materiałów twardych i kruchych oraz o złym przewodnictwie elektrycznym (diamenty, węgliki, lane magnesy, szkło)Przy drążeniu wprowadza się w przestrzeń między narzędziem wycinającym a przedmiotem proszki ścierne, które pod wpływem drgań ultradźwiękowych i nacisku kształtują odpowiednie wgłębienia. W przeciwieństwie do tradycyjnej metody wydziela się tutaj mało ciepła, co nie powoduje zmian powierzchniowych. Szybkość ścierania zależy od tworzywa, gdyż najszybszemu ścieraniu ulegają materiały twarde i kruche. Liniowa zaś prędkość drążenia zależy od rodzaju obrabianego materiału, częstotliwości i amplitudy drgań, wielkości i rodzaju proszku szlifierskiego. Najlepsze wyniki drążenia uzyskuje się przy małych częstotliwościach, toteż stosuje się drgania o częstotliwości od 16 do 24 kHz. Emulgowanie. Jest to przykład efektywnego wpływu ultradźwięków, sprowadzający się do emulgowania cieczy, dyspergowania ciał stałych, rozdrabniania ziaren zawiesin. W niektórych przypadkach metody ultraakustyczne są jedynymi (np.: tworzenie emulsji rtęci w wodzie), które można wykorzystać do tych celów.

Głównym czynnikiem powodującym emulgowanie jest zjawisko kawitacji., a tworzenie się emulsji odbywa się na granicy faz. Z tego względu wstępne wymieszanie składników przyspiesza ten proces. Przykładowo mleko poddane działaniu ultradźwięków jest łatwiej przyswajalne i wolniej się psuje. Odpylanie. O ile emulgowanie jest procesem wykorzystującym zjawisko dyspersji, o tyle przeciwnym procesem jest koagulacja, służąca tworzeniu się skupisk cząsteczek. Zjawisko łączenia się cząsteczek w węzłach fali stojącej początkowo obserwowano w zakresie drgań ultradźwiękowych lecz obecnie proces ten jest znacznie wydajniejszy w przypadku stosowania drgań słyszalnych (4-6 kHz). Efektywność procesu zależy wyłącznie od natężenia działającego bodźca, którego wartości w tych przypadkach sięgają 170dB (10W/cm2). Toteż wprowadza się syreny akustyczne jako urządzenia najwydajniejsze w tym procesie. Ponadto prowadzi się próby koagulacji różnych zawiesin w cieczach, służących do rozdzielania różnych mieszanin, oczyszczania wód opadowych itp.

Ultradźwiękowy system zdalnego sterowania można wykorzystać np. do otwierania i zamykania drzwi garażowych. Polega on na emisji fal dźwiękowych o wysokiej częstotliwości, które następnie odbierane są przez mikrofon. Ten z kolei wysyła impuls do silnika poruszającego drzwi. System zdalnego sterowania oparty na ultradźwiękach oparty na ultradźwiękach jest skuteczny jedynie w linii prostej od drzwi, dlatego coraz częściej używa się systemów radiowych. Również w systemach alarmowych wykorzystywane są fale niesłyszalne dla ucha ludzkiego. Detektory te, poprzez przetwornik wysyłają fale o określonej częstotliwości, które odbijają się od przedmiotów umieszczonych w pomieszczeniu i powracają do przetwornika. Ruch, powoduje zmianę częstotliwości fali (efekt Dopplera). Sygnał o zmianie częstotliwości przekazywany jest do układu scalonego, który ocenia prędkość oraz wymiary poruszającego się “intruza”. Wszystko, co rozmiarami przypomina człowieka, włącza alarm.

Podobne prace

Do góry