Ocena brak

Ultra i infradźwięki - Rozprzestrzenianie się ultradźwięków

Autor /Jerry Dodano /04.10.2011

Rozchodzenie się fal dźwiękowych podlega podobnym prawom jak rozchodzenie się na.: fal świetlnych. W tej sytuacji może dochodzić do częściowego lub całkowitego odbicia oraz przenikania przez granice ośrodków. Przeszkody napotykane na drodze rozprzestrzeniania się dźwięku mogą doprowadzić do uginania się, czyli jakby opływania przeszkody. Stopień uginania się biegnącej fali akustycznej zależy od długości tej fali i wielkości przedmiotu stanowiącego przeszkodę.

W przypadku rozchodzenia się fali ugięcie nastąpi wówczas, kiedy stosunek h:λ<1 (h – odpowiada wymiarowi podłużnemu przeszkody, a λ – długości fali). W miarę wzrastania wielkości przeszkody lub zmniejszania długości fali, zjawisko uginania fali słabnie. Nie istnieje ono w przypadku natrafienia na przedmioty znacznie większe w porównaniu z długością rozchodzącej się fali. W tej sytuacji poza daną przeszkodą powstanie cień akustyczny, w którym to obszarze poziom ciśnienia akustycznego jest znacznie słabszy.

Istnieje znaczna różnica zachowania się fali infra- i ultradźwiękowej przy napotkaniu przeszkody. Fala infradźwiękowa charakteryzuje się znaczną długością, a więc może podlegać ugięciu napotykając stosunkowo nawet duże przedmioty i w tej sytuacji trudno jest stwierdzić zjawisko cienia. W miarę wzrostu częstotliwości drgań, kiedy długość fali maleje (co dotyczy szczególnie obszaru ultradźwiękowego) uginanie się staje się coraz mniejsze. O ile jeszcze w zakresie niższych częstotliwości fal ultradźwiękowych występuje jeszcze zjawisko ugięcia, to w przypadku wyższych częstotliwości rozchodzenie się tych fal występuje prawie prostoliniowo, co pozwala na ich skupienie lub rozpraszanie za pomocą soczewek, czy też zwierciadeł akustycznych. Takie zachowanie ultradźwięków o bardzo krótkiej fali pozwala na ich stosowanie podobnie jak innego rodzaju promieniowania, np.: do badania struktury czy techniki sygnalizacyjnej.

Drugim zjawiskiem jest załamywanie się fali, związane z przejściem granicy dwóch ośrodków, np.: powietrza i wody. Jest ono związane z różnymi prędkościami rozchodzenia się drgań i oporów w różnych ośrodkach. Od różnicy prędkości fali w obu ośrodkach zależy wielkość współczynnika załamania. W przypadku zbyt dużego kąta padania drgania akustyczne ulegną całkowitemu odbiciu. Zwykle jednaj na granicy dwóch ośrodków fala ulega załamaniu i częściowemu odbiciu. Oznacza to, że jednocześnie powstaje fala załamana i odbita, zaś natężenie początkowe zostaje rozdzielone między dwie fale. Ilość energii przekazywanej do ośrodka jest uzależniona od oporu akustycznego. Wiadomo, że każdemu przepływowi towarzyszy pewna wielkość oporu. W tym wypadku opór akustyczny, ujmowany także jako impedancja akustyczna jest iloczynem prędkości (v) fali w danym ośrodku i gęstości (d, ρ):

z = v · d

Przy stosunkowo niewielkiej różnicy oporów, jak to mam miejsce w tkankach ciała, część fal zawsze ulega odbiciu, część zaś załamaniu i przeniknięciu do drugiego ośrodka, gdzie podąża już z inną prędkością. Opór akustyczny ciał stałych i cieczy jest wielokrotnie większy niż gazów, co powoduje, że ilość przenoszonej energii z powietrza do płynu stanowi niewielki ułamek. Przyczyną tego zjawiska jest:

1. Pokonywanie sił bezwładności cząstek wprawianych w ruch drgający

2. Pokonywanie sił tarcia ośrodka

3. Interferencja fal oraz szereg innych mniej istotnych zjawisk

Drgania ośrodka mogą się utrzymywać tylko w przypadku stałego dostarczania energii, straty bowiem wynikają z kilku przyczyn. Powstające w wyniku drgań zagęszczenia materiału powodują jego miejscowe nagrzewanie i wtórne rozpraszanie ciepła poprzez jego przewodnictwo cieplne. Drugą istotną przyczyną jest lepkość materiału czyli tarcie wewnętrzne. W przypadkach dużych częstotliwości drgań największe straty wiążą się z niejednorodnością materiału. Na granicach tych niejednorodności powstają straty cieple, dodatkowo zaś energia ultradźwiękowa ulega rozproszeniu> pochłanianie to w największym stopniu występuje w gazach, a więc w powietrzu. Słabiej jest zaznaczone to w ciałach stałych i cieczach. Poniższa tabela przedstawia wartości pochłaniania połowicznego (tj. wielkości warstwy ośrodka odpowiadającej zmniejszeniu natężenia drgań ultradźwiękowych do połowy) w powietrzu i wodzie dla różnych częstotliwości drgań.

Także, im wyższe są częstotliwości drgania akustycznego tym większa jest absorpcja. Dlatego w powietrzu ultradźwięki o wysokiej częstotliwości będą traciły wiele energii wytwarzając ciepło. Natomiast fale o małej częstotliwości, np.: infradźwiękowe, praktycznie nie będą pochłaniane.

Podobne prace

Do góry