Ocena brak

RADIATORY – ZASTOSOWANIE W KOMPUTERACH - Inne zastosowania radiatorów

Autor /Jerry Dodano /04.10.2011

Półprzewodniki takie jak np. tranzystory i diody mocy ze względu na dość duże obudowy mają możliwość oddania do otoczenia powstałego w nich w wyniku strat mocy ciepła, bez potrzeby stosowania dodatkowych urządzeń. Żeby przeciwdziałać wzrostowi temperatury powyżej niedozwolonej granicy, należy zwiększać odprowadzanie ciepła. Ciepło to można odprowadzać za pomocą : radiatora ,ogniwa Peltiera czy wentylatorów.

Może to być osiągnięte przy pomocy radiatorów, które przenoszą powstałe ciepło w tranzystorze do otaczającego powietrza poprzez przewodzenie i promieniowanie. Płaska płytka metalowa jest najprostszą formą radiatora, ale nie jest to rozwiązanie najbardziej efektywne. W większości wypadków stosuje się bardziej skomplikowane konstrukcje, które optymalizują koszt, rozmiary i wagę radiatora.

W półprzewodniku ciepło powstaje na złączu, stamtąd przenoszone jest głównie na obudowę, a później poprzez radiator do otaczającego powietrza. Takie przenoszenie ciepła można porównać z przepływem prądu przez przewód elektryczny. Analogicznie do elektrycznej rezystancji (R = V/A), odpowiada jej rezystancja termiczna (K = °C/W)

Następujący prosty wzór może posłużyć do obliczania radiatora:

Tj - T amb = P x ( Kj - m + Km - h + Kh) gdzie:

Tj= temperatura złącza

Tamb= temperatura otaczającego powietrza

P= moc wydzielana w półprzewodniku

Kj-m= rezystancja termiczna między złączem a obudową, wartość ta powinna znajdować się w danych technicznych elementu podawanych przez producenta.

Km-h= termiczna rezystancja miedzy obudową a radiatorem, wartość zależy od powierzchni styku, jakości, wielkości, jak również rodzaju wykonania. Ta wartość powinna być podana w danych technicznych.

Kh= rezystancja termiczna radiatora. Jest to rezystancja termiczna miedzy powierzchnią radiatora i otaczającym powietrzem (powierzchnia styku radiatora z powietrzem).

Chłodzenie wymuszone. Rezystancja termiczna radiatora mnożona jest przez współczynnik F, aby otrzymać zredukowane wartości, które odpowiadają różnym prędkościom powietrza.

Rezystancja termiczna między półprzewodnikiem i radiatorem powinna być możliwie najmniejsza, co uzyskuje się poprzez stosowanie dużej, płaskiej i dobrze obrobionej powierzchni styku. Obejmy powinny być dokręcone z zaleconym momentem, wystarczającym żeby uzyskać dobre przewodzenie ciepła, ale bez ryzyka uszkodzenia mechanicznego. W celu wypełnienia i pozbycia się ewentualnych bąbli powietrza używa się smarów silikonowych pomiędzy półprzewodnikiem i radiatorem. Nie powinno się go jednak używać w nadmiarze. Grubsze warstwy zmniejszają przewodzenie ciepła. Rezystancja termiczna Km-h zmienia się w zakresie między 0,14 -0,05° C/W. Często chce się odizolować półprzewodnik od radiatora poprzez cienką płytkę izolacyjną. Rezystancja termiczna różni się dla różnych rodzajów materiałów z których są wykonane płytki. Dla płytki mikowej o grubości 0,05 mm wynosi ona ok. 1°C/W, dla płytki mikowej o grubości 0,4 do 0,06 mm, która jest posrebrzona po obu stronach, wynosi ok. 0,5° C/W, a dla 3 mm grubości płytki aluminiowej z izolującym tlenkiem aluminium ok. 0,3°C/W. Występują również płytki wykonane z kaptonu, gumy silikonowej i tlenku berylu.

Najlepsza jest płytka z tlenku berylu. Używa się jej przede wszystkim w stopniach mocy urządzeń wielkiej częstotliwości. Materiału jednak nie sprzedaje się w Szwecji ze względu na to, iż jest on trujący. Ci którzy dokonują serwisu urządzeń radiowych wyprodukowanych za granica powinni mieć na uwadze fakt, że mogą one w płytkach izolacyjnych zawierać tlenek berylu. Jeżeli płytka zostanie złamana, lub uszkodzona to wdychanie powstałego kurzu może zagrażać życiu. Wynikiem tego może być chroniczne zatrucie berylem. Dłuższy kontakt może wywołać choroby nowotworowe. Rezystancja termiczna radiatorów podana jest zazwyczaj przy założeniu powierzchni czarnych i pionowym ustawieniu radiatora.

Jeżeli radiator jest zamontowany w ten sposób, że powierzchnia chłodząca będzie pozioma , wówczas rezystancja termiczna wzrasta o ok. 20%, a jeżeli powierzchnia promieniująca nie byłaby czarna lub matowo oksydowana, ale biała, to rezystancja termiczna wzrosłaby o ok. 15%. Tu należy zwrócić uwagę, że radiatory, które są oferowane w różnych kolorach maja też odpowiednio różne rezystancje termiczne. Aby zwiększyć efekt chłodzenia można stosować wymuszone chłodzenie powietrzne przy pomocy dmuchawy. Inną metodą poprawiania chłodzenia jest stosowanie elementów Peltiera. W urządzeniach profesjonalnych stosuje się również radiatory z wydrążonymi kanałami, którymi przepływa ciecz chłodząca - woda lub freon. W obwodach, w których powstają bardzo duże impulsowe straty mocy istotne znaczenie ma impedancja termiczna i pojemność cieplna radiatora. Jest ona zależna od czasu trwania impulsów i zależy od masy i bezwładności systemu. Dla bardzo krótkich impulsów termicznych rezystancja termiczna w obudowie ma decydujący wpływ na poprawną pracę urządzenia.

Do góry